
S H O R T  C O M M U N I C A T I O N S  

Second column, equations II(a) 
The first and third equations should read: 
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y y y y y x x y -  : c ~ x x x x x x x x -  + c 2 yyyyy~Ycx- + c 3 yyy~Ycyyx- 
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y y y y y x x y -  = ~ x x x x x x x x -  + ~ yyyyy~Ycx - -- ~ yyy)'Ycyyx -. 

Second column, equations II(b) 
The first and third equations should read: 
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y y y y x x x x -  --- c~ x x x x x x x x -  + c 2 y y y y y y x x -  + c 3 y y y x y y y x -  
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y y y y x x x x -  = ~ x x x x x x x x -  - ] yyyyppScx- + ~ pppScyyyx-.  
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Abstract The method 

A general procedure for the determination of Bravais lattices, 
including cases of pseudo-symmetry, is described. The 
method is based on the multiplicity of the lattice vectors, 
which may be generated from any experimental primitive 
cell, and can be easily programmed for a computer. 

Introduction 

At some step in the determination of the lattice geometry, 
either by powder methods or via the automatic orientation of 
a crystal on a single-crystal diffractometer, a primitive cell is 
obtained which allows all the reflections to be indexed. The 
successive determination of some kind of conventional cell 
(e.g. Niggli's reduced cell) and of the lattice symmetry is not 
easy to automate and, with several available programs, 
human intervention is sometimes required. Algorithms which 
at first look for the reduced cell and then deduce the lattice 
symmetry from a connected matrix (Kriv~, & Gruber, 1976; 
Santoro & Mighell, 1970) may fail in special cases because 
of experimental errors in the cell parameters which can lead 
to misinterpretation of the equalities and inequalities to be 
inspected (Clegg, 198 I). 

To alleviate the above problems, different approaches have 
been published recently. Clegg (1981) starts from the Niggli 
reduced cell and, in order to find the correct lattice 
symmetry, proposes the inspection of a special list of lattice 
vectors and angles. Himes & Mighell (1982) attack the 
problem through the enumeration of the different unitary 
matrices B which transform a primitive triplet of non- 
coplanar vectors into itself (the numbers are 1, 2, 4, 6, 8, 12, 
and 24 for triclinic, monoclinic, orthorhombic, rhombo- 
hedral, tetragonal, hexagonal, and cubic lattices, in that order 
and excluding centrosymmetry). The method can be easily 
automated, but the detection of the matrices B is by trial and, 
in principle, could last indefinitely. Besides, the conventional 
cell must be found in some other way. Le Page (1982) 
describes an algorithm which is based on the spatial 
distribution of the twofold axes; this method should be 
particularly powerful in detecting pseudo-symmetries and 
possible twin axes. 
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In connection with a computer program for the automatic 
indexing of powder patterns, we experimented with a simple 
procedure which, in principle, is able to determine the correct 
Bravais cell. The method, which first establishes the lattice 
symmetry and then obtains the conventional cell as a 
consequence, is based on the following observations. 

(i) Lattices with different point-group symmetry have 
different maximum multiplicity of the lattice vectors (MAX). 

(ii) The three vectors defining the Bravais cell are among 
those with the two lowest multiplicities (MIN). 

(iii) Non-primitive lattices show vectors with multi- 
plicities higher than MIN which are shorter than one or more 
of those defining the Bravais cell. 

Table 1 summarizes the connections between multiplicity 
of lattice vectors on one side and point-group symmetry and 
lattice type on the other; criteria for discrimination between 
sets of MIN vectors with the same multiplicity are shown in 
the footnotes. Starting from any primitive cell of the lattice, a 
list of lattice vectors is generated up to a prefixed length and 
then it is sorted, e.g. in order of increasing length. If d 
spacings are preferred, it should be remembered that the 
largest d's do not always correspond to the shortest 
direct-lattice vectors. Any further step required by Table 1 
can be easily programmed on a cJmputer. 

The pseudo-symmetry 

Because of experimental errors, some tolerance connected 
with the e.s.d.'s of the cell parameters must be allowed while 
comparing the vectors for the determination of their 
multiplicity. Unfortunately, as with all other methods, such a 
tolerance might produce an apparent higher symmetry for 
the lattice following accidental merging of sets of indepen- 
dent vectors. However, playing on the redundancy of 
available data and considering all the multiplicities charac- 
terizing each point group (not only MIN and MAX), a 
careful inspection of the list of vectors should lead to the 
correct identification of the symmetry within the limits o f t h e  
admi t t ed  tolerance. Of course, one should keep in mind that 
the metric symmetry of the lattice can be higher, but not 
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Tab le  1. Connections between lattice symmetry and multiplicity of  lattice vectors 

M A X  and MIN are the maximum and the lowest multiplicities of  the vectors for the corresponding point group. 

Point Elements of  symmetry MIN vectors defining the Lattice 
group M A X  MIN containing MIN* Bravais cell type 

i 2 2 None The three shortest non-coplanar P 
vectors are a, b and e 

2/m 4 2 Twofold axis (Set M l)i" The shortest vector of SetM I is P 
Mirror plane (SetM2) b; the two shortest vectors 

with fl > 90 ° are a and e C 

mmm 8 2 Twofold axes 

m 12 2 Threefold axis (SetR 1) 

6 Mirror planes (SetR2) 
Twofold axes (SetR3)1: 

The three shortest vectors 
with angles a = fl = y = 90 ° 
are a, b and c 

4/mmm 16 2 Fourfold axis (SetT 1) 

4 Twofold axes (SetT2) 

6/mmm 24 2 Sixfold axis (SetH 1) 

6 Twofold axes (SetH2) 

m3m 48 6 Fourfold axes 

Rhombohedral setting: the R 
three shortest and equal 
vectors of SetR2 with angle 
y < 120 ° are a 

Hexagonal setting: the 
shortest vector of SetR 1 is c; 
the two shortest and equal 
vectors of SetR3 with angle 
y = 120 ° are a 

The shortest vector of SetT 1 is P 
c; the two shortest and equal 
vectors of SetT2 with angle I 
y = 90 ° are a 

The shortest vector of SetH I is P 

c; the two shortest and equal 
vectors of SetH2 with angle 
), = 120 ° are a 

Identification of  the lattice type 

No other possibilities 

a and e are the shortest vectors 
not belonging to SetM 1 

One vector with multiplicity 4 is 
shorter than a and/or b 

a, b and e are the shortest non- 
coplanar vectors 

As for C monoclinic 
Each of three vectors with 

multiplicity 4 is shorter than 
a and/or b and/or c 

One vector with multiplicity 8 is 
shorter than a and/or b 
and/or e 

No other possibilities 

a is the shortest vector not 
belonging to SetT1 

One vector with multiplicity 
8 is shorter than a and/or e 

No other possibilities 

The three shortest and equal P a is the shortest vector 
vectors with angles a = fl = I One vector with multiplicity 
y = 90 ° are a 8 is shorter than a 

F One vector with multiplicity 
12 is shorter than a 

* If MIN vectors are parallel to both axes and planes, only axes are shown. 
i" MIN vectors which are parallel to the twofold axis are perpendicular to all the MIN vectors which lie in the mirror plane. 
1: MIN vectors which are parallel to the twofold axes are not coplanar with other MIN vectors showing multiplicity 6. 

lower ,  t h a n  t h a t  o f  the  a t o m i c  s t ruc tu re  and ,  there fore ,  
d i f f r ac ted  intensi t ies  shou ld  be c h e c k e d  as well,  i f  possible.  
Ang les  be tween  vec to r s  c a n  also be helpful  as s h o w n  in the 
fo l lowing  example s  wh ich  i l lust ra te  p rob l ems  c o n n e c t e d  wi th  
acc iden ta l  h igher  mul t ip l ic i ty .  

(1) A la t t ice  wi th  real  s y m m e t r y  6/mmm s h o w s  M A X  48. 
T h e  sugges ted  m3m s y m m e t r y  c a n  be p r o v e d  false by  the  
p resence  o f  angles  o f  120 ° be tween  equa l  M I N  vectors .  

Besides,  mul t ip l ic i ty  8 as requ i red  by  m3m shou ld  n o t  be 
found .  

(2) A la t t ice  wi th  real  s y m m e t r y  3m s h o w s  M A X  24. The  
sugges ted  6/mmm s y m m e t r y  c a n n o t  be accep ted  because  the  
h e x a g o n a l  cell is non-pr imi t ive .  

C loseness  o f  i n d e p e n d e n t  sets o f  lat t ice vec to r s  is c lear  
ev idence  o f  p s e u d o - s y m m e t r y ;  its n a t u r e  can  be eas i ly  
de tec t ed  by  inc reas ing  the  to le rance .  I f  t ha t  is done  b y  steps,  
s o m e  quan t i t a t i ve  eva lua t i on  o f  the dev ia t ion  f r o m  the 
accep t ed  s y m m e t r y  can  be ob t a ined  as well. 
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